Alu elements within human mRNAs are probable microRNA targets.
نویسندگان
چکیده
Recently, we reported that four microRNAs show perfect complementarity with MIR/LINE-2 elements within human mRNAs. This finding raises the question of whether microRNAs might also target other genomic repeats and transposable elements. Here, we demonstrate that almost 30 human microRNAs exhibit typical short-seed complementarity with a specific site within Alu elements that is highly conserved within 3' untranslated regions of human mRNAs. The results suggest that at least some Alu elements within human mRNAs serve as microRNA targets.
منابع مشابه
Inverted Alu dsRNA structures do not affect localization but can alter translation efficiency of human mRNAs independent of RNA editing
With over one million copies, Alu elements are the most abundant repetitive elements in the human genome. When transcribed, interaction between two Alus that are in opposite orientation gives rise to double-stranded RNA (dsRNA). Although the presence of dsRNA in the cell was previously thought to only occur during viral infection, it is now known that cells express many endogenous small dsRNAs,...
متن کاملEvidence for Co-Evolution between Human MicroRNAs and Alu-Repeats
This paper connects Alu repeats, the most abundant repetitive elements in the human genome and microRNAs, small RNAs that alter gene expression at the post-transcriptional level. Base-pair complementarity could be demonstrated between the seed sequence of a subset of human microRNAs and Alu repeats that are integrated parallel (sense) in mRNAs. The most common target site coincides with the evo...
متن کاملAlu-containing exons are alternatively spliced.
Alu repetitive elements are found in approximately 1.4 million copies in the human genome, comprising more than one-tenth of it. Numerous studies describe exonizations of Alu elements, that is, splicing-mediated insertions of parts of Alu sequences into mature mRNAs. To study the connection between the exonization of Alu elements and alternative splicing, we used a database of ESTs and cDNAs al...
متن کاملFunctional microRNAs and target sites are created by lineage-specific transposition.
Transposable elements (TEs) account for nearly one-half of the sequence content in the human genome, and de novo germline transposition into regulatory or coding sequences of protein-coding genes can cause heritable disorders. TEs are prevalent in and around protein-coding genes, providing an opportunity to impart regulation. Computational studies reveal that microRNA (miRNA) genes and miRNA ta...
متن کاملFrom 'JUNK' to just unexplored noncoding knowledge: the case of transcribed Alus.
Non-coding RNAs (ncRNAs) are increasingly being implicated in diverse functional roles. Majority of these ncRNAs have their origin in the repetitive elements of genome. Significantly, increase in genomic complexity has been correlated with increase in repetitive content of the genome. Primate-specific Alu repeats, belonging to SINE class of repeats, is the most abundant repeat class inhabiting ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Trends in genetics : TIG
دوره 22 10 شماره
صفحات -
تاریخ انتشار 2006